A multilevel image thresholding segmentation algorithm based on two-dimensional K-L divergence and modified particle swarm optimization
نویسندگان
چکیده
Multilevel image segmentation is a technique that divides images into multiple homogeneous regions. In order to improve the effectiveness and efficiency of multilevel image thresholding segmentation, we propose a segmentation algorithm based on two-dimensional (2D) Kullback–Leibler(K–L) divergence and modified Particle Swarm Optimization (MPSO). This approach calculates the 2D K–L divergence between an image and its segmented result by adopting 2D histogram as the distribution function, then employs the sum of divergences of different regions as the fitness function of MPSO to seek the optimal thresholds. The proposed 2D K–L divergence improves the accuracy of image segmentation; the MPSO overcomes odified PSO ultilevel image thresholding egmentation the drawback of premature convergence of PSO by improving the location update formulation and the global best position of particles, and reduces drastically the time complexity of multilevel thresholding segmentation. Experiments were conducted extensively on the Berkeley Segmentation Dataset and Benchmark (BSDS300), and four performance indices of image segmentation – BDE, PRI, GCE and VOI – were tested. The results show the robustness and effectiveness of the proposed algorithm. © 2016 Elsevier B.V. All rights reserved.
منابع مشابه
Multilevel Image Thresholding Selection Using the Modified Seeker Optimization Algorithm
Multilevel thresholding is one of the most popular image segmentation techniques. This paper presents a new multilevel maximum entropy thresholding method based on modified seeker optimization (MSO) algorithm. In the proposed method the thresholding problem is treated as an optimization problem and solved by using the MSO metaheuristics. Particle swarm optimization (PSO) algorithm is also imple...
متن کاملNature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey
Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been ...
متن کاملPSO-Based Tsallis Thresholding Selection Procedure for Image Segmentation
Multilevel thresholding is a method that is widely used in image segmentation. The thresholding problem is treated as an optimization problem with an objective function. In this article, a simple and histogram based approach is presented for multilevel thresholding in image segmentation. The proposed method combines Tsallis objective function and Particle Swarm Optimization (PSO). The PSO algor...
متن کاملDevelopment of a New Optimal Multilevel Thresholding Using Improved Particle Swarm Optimization Algorithm for Image Segmentation
Image thresholding is a very common image processing operation, since all image processing schemes need some sort of operation of the pixels into different classes. In order to determine thresholds, most methods analyze the histogram of the image. The optimal thresholds are often found by either minimizing or maximizing an objective function with respect to the values of the thresholds. In this...
متن کاملA Novel Method for Segmentation of Remote Sensing Images based on Hybrid GA-PSO
Image segmentation is defined as the process of dividing an image into disjoint homogenous regions and it could be regarded as the fundamental step in various image processing applications. In this paper, a novel multilevel thresholding segmentation method is proposed for grouping the pixels of remote sensing (RS) images into different homogenous regions. In this way, Hybrid Genetic Algorithm-P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 48 شماره
صفحات -
تاریخ انتشار 2016